319 research outputs found

    Load balancing and lifetime maximization in WSN

    Get PDF
    Workshop Univ Kyushu-INPTStrategies that balance the energy consumption of the nodes and ensure maximum network lifetime by balancing the load are proposed and analyzed. Multiple transmission power levels are used. We studied an optimal solution for calculating the hop-by-hop traffic proportions for the particular case of nodes having just two transmission power levels, and compared the results given by the heuristics with those from the optimal analytical case

    Load Balancing Techniques for Lifetime Maximizing in Wireless Sensor Networks

    Get PDF
    International audienceEnergy consumption has been the focus of many studies on Wireless Sensor Networks (WSN). It is well recognized that energy is a strictly limited resource in WSNs. This limitation constrains the operation of the sensor nodes and somehow compromises the long term network performance as well as network activities. Indeed, the purpose of all application scenarios is to have sensor nodes deployed, unattended, for several months or years.This paper presents the lifetime maximization problem in “many-to-one” and “mostly-off” wireless sensor networks. In such network pattern, all sensor nodes generate and send packets to a single sink via multi-hop transmissions. We noticed, in our previous experimental studies, that since the entire sensor data has to be forwarded to a base station via multi-hop routing, the traffic pattern is highly non-uniform, putting a high burden on the sensor nodes close to the base station.In this paper, we propose some strategies that balance the energy consumption of these nodes and ensure maximum network lifetime by balancing the traffic load as equally as possible. First, we formalize the network lifetime maximization problem then we derive an optimal load balancing solution. Subsequently, we propose a heuristic to approximate the optimal solution and we compare both optimal and heuristic solutions with most common strategies such as shortest-path and equiproportional routing. We conclude that through the results of this work, combining load balancing with transmission power control outperforms the traditional routing schemes in terms of network lifetime maximization

    Cross-Layer Extended Persistent Timeout Policy for SCTP and DSDV

    Get PDF
    International audienceCross layer techniques applied to various protocols stacks provide fair information sharing between OSI model layers. The performance gains have been demonstrated for many studied systems within protocols interactions. The example is illustrative of the reliable transport protocols that use retransmissions to achieve that reliability function. The performance gains of the persistent timeout policy for the management of the retransmission timeout have been produce in some recent works when applying that persistent timeout policy only to reliable transport protocol. The goal was to give an appropriate behavior in response to a bad state of the wireless channel that occurs and temporally blocks the transmission of data. The channel state is given by the 802.11 link layer through cross-layer mechanism. In this paper, the persistent policy is extended to the network layer and is applied to a stack that uses a reactive routing protocol, namely the Destination Sequenced Distance-Vector (DSDV) protocol that also generates additional periodic traffic regardless to the channel state. We are measuring the influence in terms of performance gains of the extended persistent policy because of the additional periodic signalization messages deriving from the used routing protocol. After the introduction in section I; Section II of this paper presents an overview of the Stream Control Transmission Protocol (SCTP). Section III describes the behavior of the DSDV protocol. Section IV presents the extended persistent timeout policy principle and Section V presents the simulation results used to compare the using of the traditional and the extended persistent timeout policies applied to the same protocol stack using SCTP and DSDV

    RCL : A new Method for Cross-Layer Network Modelling and Simulation

    Get PDF
    International audienceThe evolution from wired network systems to wireless environments such as Ad-hoc networks enables the emerging of cross-layer systems to improve the wireless network performance. Efficient methods, that may either produce or update cross-layer conceptual models have to be considered. Those models allow an efficient organisation of the wireless systems. In our approach, a cross-layer conceptual model is composed of : cross- layer interaction models and interactions description arrays, produced by the Reverse Cross-Layer (RCL) method that we proposed. The method has been applied to a chosen protocol stack

    Cross layer Interaction Models for SCTP and OLSR

    Get PDF
    International audienceThe evolution from wired system to the wireless environment opens a set of challenge for the improvement of the wireless system performances because of many of their weakness compared to wired networks. To achieve this goal, cross layer techniques are used to facilitate the sharing of information between the layers of the OSI model. In some precedent works, the Reverse Cross Layer (RCL) method has been proposed to facilitate the design of cross layer conceptual models. The method has the advantage to highlight the impact of each cross layer interaction on each protocol in order to update its source code and to describe the intuitive gains that can be achieve. The method may be applied to a given protocol stack or to an existent cross layer model to integrate new interactions. In this paper, we are applying the RCL method on the stack that uses the Stream Control Transport Protocol (SCTP) at the transport layer and the Optimized Link State Routing (OLSR) at the network layer. Cross layer conceptual models are produced based on new cross layer interactions that are proposed to populate the environment subsystem built with the application of the RCL method. The improvement of the environment subsystem is specified through the performance gains provide by the new interactions. The implementation of the interactions that impact the SCTP protocol is described in the Interaction Description Array. After the introduction, Section II of this paper presents an overview of the SCTP protocol. Section III is related to the overview of the OLSR protocol. Section IV is used for the application of the RCL method and the different interaction arrays it generates. Section V presents the improvement of the environment subsystem and the definition of the performance gain of each Cross Layer Atomic Action (CLAA)

    Analyse et Optimisation du Partage de Spectre dans les Systèmes Mobiles Intégrés Satellite et Terrestre

    Get PDF
    Les technologies mobiles terrestre et satellite sont naturellement complémentaires. Les réseaux cellulaires terrestres sont adaptés aux villes où la densité d'utilisateurs est maximale mais perdent leur rentabilité dans les zones peu peuplées. A l'inverse, les systèmes mobile satellite permettent de couvrir de vastes zones à moindre coût mais n'assurent pas la couverture dans les zones urbaines car le signal est bloqué par les constructions. En les combinant pour assurer la couverture en ville par le réseau terrestre et dans les zones moins denses avec le satellite, on obtient un système à la couverture totale pour un coût optimal. Nous appelons un tel système intégrant une composante satellite et une composante terrestres un "système intégré" satellite/terrestre. Nul doute que d'ici quelques années, le rêve de la communauté satellite de rendre tous les terminaux mobiles capables de se connecter à un satellite sera accessible. Le satellite pourra ainsi être vu par les utilisateurs de terminaux portables comme une énième technologie d'accès à un système "intégré", aux côtés du Bluetooth, du Wifi et des technologies cellulaires (GSM, UMTS, LTE). La réutilisation du spectre satellite par les systèmes terrestres est un facteur déterminant dans le succès de cette intégration car elle permet de justifier les investissements dans le système satellite qui ne peut être rentabilisé par les abonnements seuls. Toutefois sa mise en œuvre pose de nombreux problèmes : règlementaires, commerciaux et bien entendu techniques. Cette thèse apporte des solutions sur ce dernier point et j'espère qu'elle contribuera ainsi à rendre possible ce rêve d'intégration. Nous avons adopté une approche descendante du problème du partage de spectre dans les systèmes mobiles satellite-terrestre. Nous avons tout d'abord établi une synthèse sur les aspects recouverts par l'intégration des systèmes mobiles satellite et terrestre. Nous avons ensuite dressé l'état de l'art sur la problématique de la réutilisation du spectre satellite par les systèmes terrestres, que nous avons complété par nos analyses. Nous avons décidé dans cette thèse de nous focaliser sur un des problèmes majeurs soulevés par cette réutilisation : les interférences co-fréquence du système terrestre sur le lien montant satellite. A partir de l'analyse d'une solution de partage statique de spectre par coordination des plans de fréquence (principe de zone d'exclusion), nous avons élaboré puis analysé les performances de mécanismes innovants d'allocation de ressources dans le système terrestre qui permettent de réduire de façon importante les interférences. De plus, nous proposons une méthode pour garantir au système satellite que les interférences subies sur son lien montant soient inférieures à une valeur limite. Enfin, nous définissons une architecture et les mécanismes associés qui permettent l'implantation des solutions proposées dans un système satellite-terrestre fondé sur la technologie LTE. L'étude du sujet de partage de spectre dans les systèmes mobiles satellite-terrestre est relativement nouvelle et cette thèse constitue donc un travail novateur important qui pourra être utilisé comme base à de futurs travaux.Terrestrial and satellite mobile technologies are naturally complementary. Terrestrial cellular systems are adapted to urban areas where the user density is maximal but their cost-effectiveness is much lower in sparsely populated areas. On the contrary, mobile satellite systems cover large zones at a relatively low cost but they cannot ensure coverage in urban areas because of signal blockage due to buildings. By combining both systems for ensuring coverage in cities with terrestrial networks and in less dense areas with the satellite, we obtain a system with complete coverage for an optimal cost. Such a system is called mobile terrestrial and satellite "integrated system". It is likely that in a few years, the dream of enabling satellite connectivity on all mobile terminals will be within reach. The satellite will then be perceived for mobile terminal users as an additional access technology to an "integrated network" comparable to Wifi, Bluetooth or cellular technologies (GSM, UMTS, LTE). The spectrum reuse by terrestrial systems is a key for the success of this integration because it justifies part of the investments in the satellite systems that cannot be supported by user subscriptions only. However, implementation of spectrum sharing generates many issues: regulatory, commercial and obviously technical. This thesis brings answers on the latter and I hope it will contribute to make this dream of integration become reality. We used a descending approach of the issue of spectrum sharing in terrestrial and satellite mobile systems. First, we establish a synthesis of all the aspects covered by the integration of mobile satellite and terrestrial systems. Then, we made the state of the art on the issue of satellite spectrum reuse by terrestrial systems and we completed it with our analysis. We decided to focus our work on one of the major issues raised by this reuse: co-frequency interference generated by the terrestrial system on the satellite uplink. From the analysis of a solution proposing a static spectrum sharing by coordination of frequency plans (the exclusion zone principle), we elaborated and analyzed performances of innovative mechanisms of resources allocation in the terrestrial system that allows to reduce significantly the interferences. Moreover, we proposed a method for guaranteeing to the satellite system that interferences from the terrestrial system will not exceed a given threshold. At last, we define an architecture and the associated mechanism that allow the implementation of our solution in an integrated terrestrial-satellite systems based on LTE technology. The study of spectrum sharing in terrestrial-satellite mobile systems is rather new and this thesis represents an innovative work that may serve as a basis for future studies on this issue.TOULOUSE-INP (315552154) / SudocSudocFranceF

    Adaptive load control for IoT based on satellite communications

    Get PDF
    The Internet Of Things (IoT) market is growing more and more every year. Today, the number of IoT devices is estimated around 8 billion but forecasts announce 20 billion devices for 2020. Terrestrial or satellite communications systems are already deployed to answer the connectivity need. These systems rely on a Random Access CHannel (RACH) used either to send resource allocation requests or directly the useful message. Because of the number of IoT devices, the overload on the RACH is an emerging issue since it may cause a service outage. This is especially the case for IoT satellite systems because of the wide area covered by a single satellite. The Access Class Barring (ACB) is the load control mechanism used within the Narrow Band IoT. Unfortunately, no method was specified to compute the load control parameters. In this paper, in the context of a satellite IoT system, we propose a method to compute dynamically ACB based load control parameters. Thanks to our method, the load control mechanism reach excellent results regarding transmission reliability and energy consumption for various traffic scenarios

    Resource Allocation for Real Time Services in LTE Networks: Resource Allocation Using Cooperative Game Theory and Virtual Token Mechanism

    Get PDF
    International audienceThe LTE specifications provide QoS for multimedia services with fast connectivity, high mobility and security. However, 3GPP specifications have not defined scheduling algorithms to exploit the LTE characteristics to support real time services. In this article we propose a two level scheduling scheme composed by cooperative game theory, a virtual token mechanism, and the well known algorithms EXP-RULE and Modified-Largest Weighted Delay Firs (M-LWDF) in downlink system. By using cooperative game theory such as bankruptcy game and Shapley value, the proposed mechanism works by forming coalitions between flow classes to distribute the bandwidth fairly among all of them. Both algorithms EXP-RULE and M-LWDF have been modified to use a virtual token mechanism to improve their performance, giving priority to real time flows. By taking the arrival rate of packets into account, the proposed mechanism partially included in previous schedulers has been adapted to this work to increase remarkably the performance of the resource allocation for real time flows. The performance evaluation is conducted in terms of system throughput, Packet loss ratio, total cell spectral efficiency, delay and fairness index

    Improving MANET routing with satellite out-of-band signaling

    Get PDF
    International audienceRouting in mobile ad hoc networks is a complex task due to the mobility of the nodes and the constraints linked to a wireless multihop network (e.g., limited bandwidth, collisions, and bit errors). These adverse conditions impair not only data traffic but also routing signaling traffic, which feeds route computation. In this contribution, we propose to use satellite communications to help in the distribution of mobile ad hoc network routing signaling. The optimized link-state routing (OLSR) is chosen among several routing protocols to be extended with satellite-based signaling, yielding a version we call OLSR hybrid signaling (OLSR-H). This new scheme is evaluated through simulations and yields improvements of approximately 10% in the data delivery ratio compared with a regular OLSR. This evaluation is conducted using two different network topology models, one being fit for representing forest firefighting operations

    Optimisation de réseaux mobiles hybrides satellite-terrestres

    Get PDF
    Le monde des communications par satellite est dominé par les systèmes de diffusion de la télévision. Cependant, des satellites de communication offrent aussi des services de téléphonie et de données. Ils sont regroupés dans les familles des systèmes fixes et mobiles et ciblent des marchés de niche. Dans cette thèse, nous avons la volonté d étendre les scénarios d utilisation de ces systèmes. Notre vision nous dicte que leur développement est lié à l utilisation de réseaux hybrides mobiles satellite-terrestre. En effet, une utilisation complémentaire des deux segments permet de s affranchir d une concurrence trop féroce des réseaux de télécommunications terrestres. Pour cela, nous optons pour deux applications qui nous paraissent prometteuses : un réseau mobile LTE (Long Term Evolution) avec des stations de base qui possèdent un backhaul satellite et un réseau MANET (Mobile Ad-hoc NETwork) qui s interconnecte à des réseaux extérieurs grâce à des liaisons satellite. Nous soulevons l un des problèmes les plus contraignants du réseau mobile LTE avec des backhauls satellite : la gestion de la mobilité. L analyse du standard nous a conduits à conclure quant à la nécessité d optimiser les procédures du handover. Ceux qui nécessitent des modifications surviennent entre des stations de base qui n utilisent pas le même backhaul satellite et entre une station de base avec un backhaul satellite vers une avec un backhaul terrestre. Deux points nous ont semblé importants : la phase de préparation et le mécanisme qui permet d éviter les pertes. Nous proposons donc une nouvelle phase de préparation qui prend en compte le retard induit par la liaison satellite ainsi qu une phase de préparation à double décision combinée avec une préparation de multiples stations de base. Nous tentons ainsi de maximiser les chances de réaliser un handover avec succès. Puis, nous avons imaginé un mécanisme qui permet à la fois d éviter les pertes lors de l exécution du handover et de sauvegarder les précieuses ressources du satellite. Les réseaux MANET associés à des liaisons satellite offrent des caractéristiques très intéressantes pour les communications d urgence, telles que l indépendance vis-à-vis des infrastructures terrestres susceptibles d être endommagées par des catastrophes ainsi qu un déploiement rapide pour une intervention sur le théâtre des opérations. Nous avons souhaité améliorer l un des points cruciaux dans le cadre d une hybridation : la sélection de la passerelle satellite. Nous avons donc développé un mécanisme qui prend en compte la charge sur les passerelles satellite ainsi que le phénomène d oscillation de passerelle souvent négligé dans la littérature. Ces optimisations ont pour but de favoriser le développement de réseaux hybrides satellite terrestres en améliorant les performances de ces réseaux. L avenir nous semble prometteur quant à l utilisation de la technologie LTE avec un backhaul satellite pour lequel nous avons proposé une nouvelle gestion de la mobilité qui est primordiale pour son développement.Satellite communications are leaded by television broadcasting. Yet, fixed and mobile satellite systems provide voice services as well as IP-based applications. In this thesis, we try to develop user scenarios in order to extend their targeted market. Our vision to reach this objective consists to use hybrid satellite and terrestrial mobile networks. This network design avoids a competition between both segments in which a satellite success is difficult to imagine. Furthermore, hybrid networks may draw benefits from both segments. Two promising scenarios have been selected. The first one consists in a mobile LTE network (Long Term Evolution) with base stations backhauled by satellite links whereas the second scenario is composed of a Mobile Ad-hoc Network (MANET) connected to external networks thanks to satellite systems. One of the main problems in the hybrid LTE scenario is caused by mobility procedures. As a consequence of the standard analysis, we have decided to optimize the mobility management in two cases: a handover between two base stations for which the backhaul is provided by two different satellite terminals and a handover from a base station with a satellite backhaul to one with a terrestrial backhaul. Two procedures have drawn our attention: the preparation phase and the loss avoidance mechanism during the execution phase. First of all, we design a new procedure for the preparation which takes into account the delay induced by the satellite link. This new phase is based on a twofold decision preparation associated with multiple preparations. This solution leads to an increase of handover success. The second optimization aims to avoid losses during the execution phase and, at the same time, save satellite resources. MANET and satellite hybridization leads to very interesting characteristics for public safety communications. Indeed, these networks are independent of terrestrial infrastructures that can be impaired or destroyed. Furthermore, they can be rapidly deployed in the theater of operation. Gateway selection is a crucial problem linked to hybrid MANET. Therefore, we have focused our work on this mechanism taking into account the measured load on the satellite links as well as an oftenneglected phenomenon, the gateway flapping. These optimizations tend to promote hybrid satellite and terrestrial networks improving their performance. A promising future is foreseen for the hybrid LTE technology and we have proposed a solution to a problem that may be very detrimental to its deployment.TOULOUSE-INP (315552154) / SudocSudocFranceF
    • …
    corecore